3.335 \(\int \cot (c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=182 \[ -\frac{2 a^{5/2} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{2 b (2 a B+A b) \sqrt{a+b \tan (c+d x)}}{d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d} \]

[Out]

(-2*a^(5/2)*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d + ((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan
[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(5/2)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d +
 (2*b*(A*b + 2*a*B)*Sqrt[a + b*Tan[c + d*x]])/d + (2*b*B*(a + b*Tan[c + d*x])^(3/2))/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.84733, antiderivative size = 182, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.258, Rules used = {3607, 3647, 3653, 3539, 3537, 63, 208, 3634} \[ -\frac{2 a^{5/2} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{2 b (2 a B+A b) \sqrt{a+b \tan (c+d x)}}{d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a^(5/2)*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d + ((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan
[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(5/2)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d +
 (2*b*(A*b + 2*a*B)*Sqrt[a + b*Tan[c + d*x]])/d + (2*b*B*(a + b*Tan[c + d*x])^(3/2))/(3*d)

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^m*(c + d
*Tan[e + f*x])^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \cot (c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx &=\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2}{3} \int \cot (c+d x) \sqrt{a+b \tan (c+d x)} \left (\frac{3 a^2 A}{2}+\frac{3}{2} \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)+\frac{3}{2} b (A b+2 a B) \tan ^2(c+d x)\right ) \, dx\\ &=\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{4}{3} \int \frac{\cot (c+d x) \left (\frac{3 a^3 A}{4}+\frac{3}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)+\frac{3}{4} b \left (3 a A b+3 a^2 B-b^2 B\right ) \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{4}{3} \int \frac{\frac{3}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{3}{4} \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\left (a^3 A\right ) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{1}{2} \left ((a-i b)^3 (i A+B)\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{3} \left (2 \left (\frac{3}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{3}{4} i \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right )\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{\left (a^3 A\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{\left (2 a^3 A\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{\left ((a-i b)^3 (A-i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac{\left ((a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=-\frac{2 a^{5/2} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{\left (i (a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{\left ((a-i b)^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{2 a^{5/2} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 b (A b+2 a B) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 b B (a+b \tan (c+d x))^{3/2}}{3 d}\\ \end{align*}

Mathematica [A]  time = 1.10937, size = 177, normalized size = 0.97 \[ \frac{2 \left (-3 a^{5/2} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )+3 b (2 a B+A b) \sqrt{a+b \tan (c+d x)}+\frac{3}{2} (a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )+\frac{3}{2} (a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )+b B (a+b \tan (c+d x))^{3/2}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(2*(-3*a^(5/2)*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]] + (3*(a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a - I*b]])/2 + (3*(a + I*b)^(5/2)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])
/2 + 3*b*(A*b + 2*a*B)*Sqrt[a + b*Tan[c + d*x]] + b*B*(a + b*Tan[c + d*x])^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [C]  time = 3.712, size = 55566, normalized size = 305.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out